
SLR: Learning Quadruped Locomotion without
Privileged Information

Shiyi Chen1, Zeyu Wan1, Shiyang Yan1, Chun Zhang*,1, Weiyi Zhang1, Qiang Li*,2, Debing
Zhang1, Fasih Ud Din Farrukh1

1Tsinghua University, 2Shenzhen Technology University

Figure 1: We propose a framework for training a robust quadruped lo-
comotion policy without relying on privileged information. The robot
effectively navigates challenging terrains, showcasing adaptive loco-
motion skills acquired through self-learning.

Abstract: The recent mainstream reinforcement learning control for quadruped
robots often relies on privileged information, demanding meticulous selection
and precise estimation, thereby imposing constraints on the development pro-
cess. This work proposes a Self-learning Latent Representation (SLR) method,
which achieves high-performance control policy learning without the need for
privileged information. To enhance the credibility of the proposed method’s eval-
uation, SLR was directly compared with state-of-the-art algorithms using their
open-source code repositories and original configuration parameters. Remark-
ably, SLR surpasses the performance of previous methods using only limited pro-
prioceptive data, demonstrating significant potential for future applications. Ulti-
mately, the trained policy and encoder empower the quadruped robot to traverse
various challenging terrains. Videos of our results can be found on our website:
https://11chens.github.io/SLR/

Keywords: Locomotion, Reinforcement Learning, Privileged Learning

1 Introduction

Humans and animals inherently possess locomotion abilities, enabling them to traverse various com-
plex terrains. In contrast, gait control for robots is highly challenging. Model-based methods

∗Corresponding Author

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://11chens.github.io/SLR/

have achieved some success by leveraging robots’ mechanical structures and dynamic principles
[1, 2, 3, 4, 5]. However, finding a balance between model accuracy and computational efficiency
remains difficult, especially for real-time applications.

Additionally, designing these models requires a deep understanding of a robot dynamics, posing a
significant challenge for researchers. As a result, Reinforcement Learning (RL) methods are be-
coming increasingly popular. By simulating real-world environments and training policies with
customized reward functions，these methods enable robots to perform complex locomotion tasks
in real-time [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

The recent mainstream RL applications in quadruped robots rely on privileged learning meth-
ods [19]. In real-world scenarios, a robot’s interaction with its environment is modeled as a
Partially Observable Markov Decision Process (POMDP). Solely relying on proprioceptive sen-
sor measurements, a robot cannot fully perceive external environmental information, limiting its
decision-making capabilities. Consequently, many studies leverage the “observability” advantages
of simulation platforms. During training, various physical parameters (such as friction coefficients
[10, 20, 21], restitution coefficients [9, 21], and scan-dots of the terrain [14, 22]) are artificially added
as privileged information to help the robot understand both itself and the external environment.

Unlike human cognition, which navigates terrains without explicit knowledge of physical parame-
ters, neural network-based robots may not benefit from adding such parameters. This is because the
parameters are not used to solve dynamic equations but are simply input into the neural network. As
a result, these privileged information pieces may not enhance the interpretability or effectiveness of
neural network-based agents.

Therefore, instead of relying on manually chosen physical parameters to construct privileged in-
formation, this work explores whether it is possible for robots to learn a latent representation of
environmental states by themselves? It is proposed that intelligent robots should be capable of self-
learning latent representations, which are inherently more suitable than those predefined by humans.

To achieve this, we propose the Self-learning Latent Representation (SLR) algorithm, which gen-
erates latent representations guided by a RL Markov process without privileged information. This
self-learning approach enables the robot to grasp latent environmental features and exhibit general-
ized locomotion capabilities across challenging terrain, as illustrated in Figure 1.

Our results show that the SLR algorithm, which operates without privileged information, outper-
forms traditional privileged learning methods. It consistently aligns with actual terrain conditions
across various terrains. Implemented in existing open-source repositories and evaluated in the same
environments as previous studies, the SLR algorithm demonstrates state-of-the-art (SOTA) perfor-
mance in both simulations and real-world applications. This suggests that the self-learning approach
has considerable potential for future expansion.

2 Related Work

Privileged learning in RL-based methods can be divided into explicit estimation and implicit esti-
mation methods based on the target of supervised learning. In this paper, directly fitting specific
physical parameters from privileged information is referred to as explicit estimation, while fitting
the latent representation of privileged information is classified as implicit estimation.

Explicit Estimation. [6] concurrently trains a policy network and a state estimator, which include
real-world parameters that are difficult to obtain accurately, such as linear velocity, foot height, and
contact probability. [13] sets friction coefficients and stiffness coefficients as privileged information,
inferring these from observation history to assist the robot in domain randomizations. But in the real
world, the quadruped robot’s foot contact time is very short during fast running, making it difficult
to fully perceive ground friction. Therefore, [12] proposes learning information-gathering behaviors
by adding an active estimation reward, which increases the accuracy of estimates for privileged
information disparities.

2

Figure 2: Illustration of SLR training framework. All dashed lines represent the network updating
process. The translucent fuchsia lines indicate the encoder updates through backpropagation from
the Critic network, the Transition model, and random sampling. The remaining solid lines represent
the network’s forward inference process.

Implicit Estimation. To train quadruped robots on complex terrain, estimating a large amount
of privileged information explicitly is challenging. A common approach is to encode this high-
dimensional information into a latent representation. [10] utilizes a teacher encoder to compress data
such as friction and terrain height into a latent representation, and then a student adaptation module
learn to infer this latent representation from observation history. [11] optimized the teacher-student
training process from [10] in one stage by regularizing the teacher’s actual privileged latent and
supervising the student’s estimated privileged latent. The algorithm of [9] also includes a teacher-
student policy. During training, the teacher’s encoder is used, and the student’s adaptation module
output aligns with the teacher’s encoder. For deployment, the student’s adaptation module and the
teacher’s trained policy are utilized together. [8] employs the Asymmetric Actor-Critic (AAC) [7]
method, feeding privileged information to the critic network while using encoder-decoder estimators
to assist the actor in imagining this privileged information.

3 Method

3.1 Problem Formulation

Our goal is to construct a one-stage end-to-end system based on RL, using proprioceptive sensor
data as input for measuring and controlling joint movements.

Observation Space. The observations ot consist of 45 dimensions, including the robot’s base an-
gular velocity ω, commands from the joystick ct=[vcmd

x ,vcmd
x ,ωcmd

yaw], measurement of the gravity
vector gt, joint positions θ and velocities θ̇, and the actions at−1 taken by the robot at the previous
time step.

Action Space. The action space is a 12-dimensional vector at corresponding to the four legs of
the quadruped robot, with each leg having three motor drive units. The neural network’s output is
converted into actual torque τ through a PD controller.

Reward Functions. The reward functions we used during the training are shown in Table A1, which
come from [10, 16, 23].

Domain Randomizations. For the training of our method, domain randomizations are used. The
details are shown in Table A2, which come from [8, 21].

3

3.2 Framework Overview

The proposed training framework utilizes the Markov Decision Process (MDP) to guide self-learning
of the latent representation through state transitions, distinctions, and cumulative rewards, without
relying on manually defined privileged information. All networks in this framework are multi-layer
perceptrons (MLPs). Table A3 in the Appendix details the MLP structures, and Table A4 lists the
training hyperparameters. The training framework is illustrated in Figure 2.

Encoder: In this architecture, the encoder’s input consists of the observation history oHt , which is
composed of proprioceptive information ot from the previous 10 time steps. The encoder outputs a
20-dimensional latent representation zt of the observation history:

zt = ϕ(oHt) (1)

Actor-Critic: The policy (Actor) and Critic network are trained jointly via Proximal Policy Op-
timization (PPO) algorithm [24]. The policy takes as input the current proprioceptive observation
ot and the latent representation zt, and it outputs the joint position at. The Critic network, which
shares the same input as the policy, outputs the state value vt. It is worth noting that, we turn off
the gradient of zt in the policy and turn it on in the Critic network, using the backpropagation of the
Critic network to update the encoder in the direction of the maximum cumulative reward:

at = π (ot, sg[zt]) (2)

vt = V (ot, zt) (3)

where sg[·] is the stop gradient operator.

Transition Model: The Transition model simulates the real state transitions of the environment
p (st+1 | st, at). Its input is the latent representation zt and the action at, and it outputs the next
time step’s latent estimation z̃t+1:

z̃t+1 = µ(zt, at) (4)

Loss Function: We align the estimated z̃t+1 from the state transition model with the actual latent
state zt+1 at time t + 1, while ensuring distinctiveness from other latent states zt+n at different
times t + n. Drawing inspiration from [25, 26], we formulate a latent representation loss function
utilizing a triplet loss, denoted as Ltrip.

Ltrip (zt+1, z̃t+1, zt+n) = max
(
∥zt+1 − z̃t+1∥22 − ∥zt+1 − zt+n∥22 +m, 0

)
, s.t. n ̸= 1 (5)

where m is a margin that is enforced between z̃t+1 and zt+n pairs, set to 1.0 in the experiment.

This updating strategy empowers the encoder to comprehend the dynamics of environmental state
transitions and extract environmental attributes by assimilating state-action pairs derived from the
MDP rollout. Finally, the triplet loss Ltrip is multiplied by a triplet coefficient and added to the PPO
loss Lppo [24] for network updating. Details of simulation and training are in Appendix 1.

4 Experiments

4.1 Ablation Study for Latent Representations

To evaluate the proposed algorithm against traditional privileged learning algorithms, an ablation
study was conducted. In this setup, commonly used privileged information et ∈ R10 was chosen,
including parameters such as friction, restitution, foot height, and foot contact. The methods using
different types of latent representations are as follows:

1) Implicit: The policy input includes the implicit privileged latent lt, which is encoded from
privileged information et by adopting the teacher policy approach in [9, 10].

2) Explicit: The policy input includes the explicit privileged information ẽt = ϕ(oHt).

3) SLR w/ explicit: The SLR policy input is the concatenation of the self-learning latent zt
and explicit privileged latent ẽt.

4

Figure 3: Ablation study training curves, curves are averaged over 3 seeds. The shaded area repre-
sents the standard deviation across seeds, and the curves are smoothed using Gaussian filtering.

4) SLR w/ implicit: The SLR policy input is the concatenation of the self-learning latent zt
and implicit privileged latent lt.

5) SLR w/o latent: The SLR policy input does not include any latent representations and
does not utilize an encoder.

To ensure the fairness of quantitative comparisons, the configurations used in the experiments are all
based on the default settings in the code repository [27]. Training was conducted for 6000 iterations
under multiple terrains by default, and the results are presented in Figure 3. And we can draw the
following conclusions:

1. The SLR algorithm outperforms traditional explicit and implicit privileged learning methods,
suggesting that unified privileged information struggles to effectively represent diverse terrains.

2. Incorporating additional privileged latent information reduces the SLR algorithm’s performance,
possibly due to increased policy input disrupting the critic’s guidance on updating the self-learning
latent.

4.2 Latent Representation Analysis

Identifying and distinguishing terrain types is crucial for robotic systems [28]. To evaluate the
self-learned latent representation, we conducted a simulation-based analysis. The test environment
includes four terrains: an upward slope, descending stairs, flat ground, and ascending stairs. The
robot navigates these terrains sequentially (Figure 4), and the latent representation output is recorded
at each step. We then apply t-distributed stochastic neighbor embedding (t-SNE) to project these
complex latent representations into a two-dimensional space for analysis. The latent representations
from Implicit and SLR are examined separately, as shown in Figure 5.

Different Terrain Representation. As shown in Figure 5. The self-learned latent representations
reveal distinct ring-shaped regions (labeled A, B, C, D) for each terrain. Notably, regions A and D
exhibit similarity, suggesting the robot perceives up slope and ascending stairs as similar processes.
In contrast, representations trained with the Implicit method present scattered points, indicative of
overlapping privileged information across terrains.

Figure 4: t-SNE test terrains.

Terrain Transition Representation. Notably,
in the SLR latent representations, when the
robot transitions from one terrain to another,
all four ring-shaped latent representations show
“tails”. For instance, when transitioning from
an up slope to descending stairs, the latent rep-
resentation in region A has a tails extending to
the right, with the tail’s end having a color sim-
ilar to the lower left corner of region B. This indicates that the robot is near the boundary between
terrains at that moment, and our latent representations are effectively indicating such terrain transi-
tions.

5

Figure 5: t-SNE visualization of Implicit (left) and SLR (right). Color intensity represents cumu-
lative steps across four terrains. The privileged latent distribution is discrete and weakly correlated
with terrain. In contrast, the SLR latent trajectories align precisely with the terrains traversed by the
robot, with each ring-like representation accompanied by a “tail”, indicating terrain transitions.

5 Results

5.1 Compared Methods

Previous comparative studies of robot algorithms often lack fairness due to the absence of a univer-
sal benchmark in robotics. Comparing algorithms within one’s own environment is not objective,
as reward functions and hyperparameters are typically optimized for the researcher’s algorithm.
Additionally, replicating previous algorithms in a new code repository can lead to incomplete repro-
ductions, potentially affecting their performance.

In this study, these issues are addressed by directly implementing the SLR algorithm in the open-
source code repositories of previous SOTA works [9, 11, 13, 27, 29]. Only the algorithm framework
is modified while keeping other variables consistent with the original settings. This approach en-
sures a fair comparison between our method and the publicly available SOTA algorithms1. The
algorithms which are evaluated as given below:

• MoB[13]: Explicit estimation, trained on flat ground with the Unitree Go1 robot.

• RLvRL[9]: Implicit estimation, trained on flat ground with the Cheetah robot.

• ROA[11]: Implicit estimation, trained on custom fractal noise environment using a Unitree
Go1 robot equipped with a manipulator.

• HIM[29]: Explicit and implicit estimation, trained in multi-terrain environments with the
Unitree Aliengo robot.

• Baseline[27]: No encoder, no privileged information, trained in multi-terrain environments
with the Unitree A1 robot.

5.2 Simulation

All five code repositories implemented reinforcement learning based on the PPO algorithm, with
training conducted on the IsaacGym platform [27, 30] using three different random seeds. The
training curves are illustrated in Figure 6. Additionally, to evaluate the locomotion capabilities,
experiments on velocity tracking performance were conducted on flat terrain. The evaluation metrics
included Linear Velocity Tracking Error (LVTE) and Angular Velocity Tracking Error (AVTE), both
measured using Mean Square Error (MSE). The evaluation results are summarized in Table 1.

1Previous evaluations in a single repository achieved noticeably better performance (see Section 4.1). To
provide more conclusive evidence, we extended our experiments.

6

Figure 6: Training curves from various repositories show that the mean reward of SLR surpasses
those of Baseline, RLvRL, and ROA, is slightly higher than MoB, and is comparable to HIM. The
shaded area represents the standard deviation across seeds, and the curves are smoothed using Gaus-
sian filtering. Note: SLR achieved a higher terrain level than HIM, indicating superior performance.

Metrics Ranges Method
Code Repository

MoB RLvRL ROA HIM Baseline

LVTE
[-1,1] m/s

Previous 0.058±0.011 0.032±0.003 0.150±0.001 0.014±0.001 0.021±0.005

Ours 0.029±0.004 0.024±0.002 0.136±0.001 0.013±0.002 0.011±0.004

[-2,2] m/s
Previous 0.181±0.014 0.108±0.006 N/A 0.019±0.009 0.074±0.007

Ours 0.124±0.023 0.106±0.002 N/A 0.017±0.002 0.066±0.004

AVTE
[-1,1] rad/s

Previous 0.035±0.002 0.182±0.007 1.100±0.041 0.013±0.009 0.137±0.013

Ours 0.049±0.001 0.057±0.007 1.096±0.025 0.014±0.011 0.077±0.019

[-2,2] rad/s
Previous 0.131±0.015 0.347±0.002 N/A 0.038±0.019 0.315±0.021

Ours 0.086±0.009 0.142±0.002 N/A 0.038±0.023 0.223±0.026

Table 1: Velocity tracking errors in various environments. The SLR algorithm demonstrates superior
velocity tracking capabilities compared to the previous algorithm in most cases. Top performances
are highlighted in bold. Note: N/A indicates that the ROA code repository does not support rapid
locomotion.

Based on the evaluation results of the five code repositories, the proposed SLR algorithm generally
achieves higher mean rewards and superior velocity tracking capabilities compared to the original
implementations. From these results, we can draw the following conclusions:

1. The SLR algorithm achieves mean rewards comparable to those of the recently released top-
performing HIM algorithm, but with a higher terrain level (see Figure 8), indicating superior per-
formance. This demonstrates that learning from limited proprioceptive data can rival advanced
privileged learning methods.

2. The SLR algorithm’s effectiveness in managing complex tasks with MoB (multiple commands)
and ROA (manipulator-equipped) repositories suggests that self-learning latent representations offer
more general benefits than manually selected privileged information.

3. The SLR algorithm demonstrates enhanced tracking capabilities across various velocity ranges.
One reason for this is that SLR can implicitly infer velocity from proprioceptive data. Additionally,
the Critic network optimizes for maximum cumulative rewards, with velocity tracking as the most
significant term in the reward function. Consequently, the backpropagation in the Critic network
naturally guides the latent representation to optimize tracking performance.

5.3 Deploy in Real-World

The trained policies are deployed on the Unitree Go2 robot in real-world as depicted in Figure 7.
Performance evaluation of the policy was conducted across various indoor and outdoor terrains, and
comparative analyses were performed against code repositories [13, 27, 29] and Unitree built-in
MPC control method. Each environment was tested 10 times. As presented in Table 2, the results
demonstrate the superior efficacy of our policy in real-world scenarios.

7

6 Discussion and Limitations

In this study, we present a quadruped locomotion algorithm that operates without privileged infor-
mation. Relying solely on limited proprioceptive data, the algorithm achieves SOTA performance.
Looking ahead, we anticipate that future self-learning approaches will be able to integrate privileged
information and external perceptions, leading to even more impressive outcomes.
While our blind policy demonstrates robust motion, achieving superior trajectory planning neces-
sitates the use of vision sensors. Moving forward, we aim to enhance quadruped locomotion by
integrating visual information for tackling even more complex challenges.

(a) Indoor Scenarios (b) Outdoor Scenarios

Figure 7: Indoor and outdoor experiment settings. The left column (a) showcases indoor scenarios,
with the top row depicting the long stairs and the bottom row featuring the step obstacle.The right
column (b) illustrates outdoor scenarios, depicting the robot moving through a bush, on a cobbled
road, and climbing a curb in the top row, while the bottom row showcases the robot encountering a
slope, stairs, and a rock.

Scenarios Terrain Metrics Ours HIM MoB Baseline MPC

Indoor
Stairs Number 136.4±24.5 107.4±19.1 0.0±0.0 0.0±0.0 93.5±32.9

Step Height (cm) 35.4±2.2 30.7±2.7 6.4±1.2 5.3±0.5 15.6±1.6

Outdoor

Bush

Success
rate (%)

100 100 90 50 100

Cobbled Road 100 100 100 30 90

Curb 100 100 20 0 40

Earthen Slope 100 100 40 0 60

Stairs 100 100 0 0 20

Rock 70 30 0 0 0

Table 2: Comparison of deployment methods across various terrains. Each method was tested 10
times per terrain. The “Number ” indicates the total stairs (16 × 29 cm) climbed by the robot from
start to fall, and “Height” shows the maximum step height the robot can handle. The ± symbol rep-
resents a 95% confidence interval. A successful trial means the robot completes the terrain without
intervention or failure within the allotted time. Top performances are in bold.

8

Acknowledgments

We would like to express our gratitude to Han Yu for providing invaluable assistance in our de-
ployment work. Additionally, this work is supported by the National Natural Science Foundation of
China (No.U20A20220).

References
[1] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim. Mit cheetah 3: Design

and control of a robust, dynamic quadruped robot. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2245–2252. IEEE, 2018.

[2] C. D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter. Dynamic locomotion through online
nonlinear motion optimization for quadrupedal robots. IEEE Robotics and Automation Letters,
3(3):2261–2268, 2018.

[3] Y. Ding, A. Pandala, C. Li, Y.-H. Shin, and H.-W. Park. Representation-free model predictive
control for dynamic motions in quadrupeds. IEEE Transactions on Robotics, 37(4):1154–1171,
2021.

[4] A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma, T. Pailevanian, S.-K.
Kim, K. Otsu, J. Burdick, et al. Autonomous spot: Long-range autonomous exploration of
extreme environments with legged locomotion. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2518–2525. IEEE, 2020.

[5] C. Gehring, P. Fankhauser, L. Isler, R. Diethelm, S. Bachmann, M. Potz, L. Gerstenberg, and
M. Hutter. Anymal in the field: Solving industrial inspection of an offshore hvdc platform
with a quadrupedal robot. In Field and Service Robotics: Results of the 12th International
Conference, pages 247–260. Springer, 2021.

[6] G. Ji, J. Mun, H. Kim, and J. Hwangbo. Concurrent training of a control policy and a state
estimator for dynamic and robust legged locomotion. IEEE Robotics and Automation Letters,
7(2):4630–4637, 2022.

[7] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic
for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017.

[8] I. M. A. Nahrendra, B. Yu, and H. Myung. Dreamwaq: Learning robust quadrupedal lo-
comotion with implicit terrain imagination via deep reinforcement learning. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 5078–5084. IEEE, 2023.

[9] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via rein-
forcement learning. The International Journal of Robotics Research, 43(4):572–587, 2024.

[10] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
2021.

[11] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: Learning a unified policy for
manipulation and locomotion. In Conference on Robot Learning, pages 138–149. PMLR,
2023.

[12] G. B. Margolis, X. Fu, Y. Ji, and P. Agrawal. Learning to see physical properties with active
sensing motor policies. Conference on Robot Learning, 2023.

[13] G. B. Margolis and P. Agrawal. Walk these ways: Tuning robot control for generalization with
multiplicity of behavior. In Conference on Robot Learning, pages 22–31. PMLR, 2023.

[14] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. arXiv
preprint arXiv:2309.14341, 2023.

9

[15] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour
learning. arXiv preprint arXiv:2309.05665, 2023.

[16] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains
using egocentric vision. In Conference on robot learning, pages 403–415. PMLR, 2023.

[17] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi. Agile but safe: Learning collision-free
high-speed legged locomotion. arXiv preprint arXiv:2401.17583, 2024.

[18] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang. Learning vision-guided quadrupedal lo-
comotion end-to-end with cross-modal transformers. arXiv preprint arXiv:2107.03996, 2021.

[19] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. In Conference on
Robot Learning, pages 66–75. PMLR, 2020.

[20] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[21] J. Wu, G. Xin, C. Qi, and Y. Xue. Learning robust and agile legged locomotion using adver-
sarial motion priors. IEEE Robotics and Automation Letters, 2023.

[22] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-
ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022.

[23] Z. Fu, A. Kumar, J. Malik, and D. Pathak. Minimizing energy consumption leads to the emer-
gence of gaits in legged robots. arXiv preprint arXiv:2111.01674, 2021.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[25] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recogni-
tion and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 815–823, 2015.

[26] A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine. Learning invariant representations
for reinforcement learning without reconstruction. arXiv preprint arXiv:2006.10742, 2020.

[27] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, pages 91–100. PMLR,
2022.

[28] H. Karnan, E. Yang, D. Farkash, G. Warnell, J. Biswas, and P. Stone. Sterling: Self-supervised
terrain representation learning from unconstrained robot experience. In 7th Annual Conference
on Robot Learning, 2023.

[29] J. Long, Z. Wang, Q. Li, L. Cao, J. Gao, and J. Pang. Hybrid internal model: Learning agile
legged locomotion with simulated robot response. In The Twelfth International Conference on
Learning Representations, 2024.

[30] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

10

A Appendix

A.1 Self-learning Latent Representation Details

Algorithm 1 Self-learning Latent Representation
1: Randomly initialize adaptation module ϕ, transition model µ, and policy π
2: Initialize empty replay buffer D
3: for itr = 1, 2, . . . do
4: o0 ← env.reset()
5: for t = 0, 1, . . . , T do
6: zt ← ϕ(oHt)
7: at ← π(ot, sg[zt])
8: ot+1, rt ← env.step(at)
9: Store (ot, at, rt, ot+1) in D

10: end for
11: zt+1 ← ϕ(oHt+1), z̃t+1 ← µ(zt, at), zt+n ← RandomSample(D)
12: Compute Ltrip (Eq.5) and Lppo [24]
13: Update π, µ, ϕ by optimizing Lppo + αLtrip
14: Empty D
15: end for

We presented the details of the Self-learning Latent Representation in Section 3.2 of the main paper.
We set H to 10 and the triplet coefficient α to 1.0.

A.2 Reward Terms Detail

In Table A1, v is the linear velocity, σ is the tracking shaping scale equal to 0.25 here, htarget is the
desired base height corresponding to ground, ptarget

z and piz are the desired feet position and real feet
position in z-axis of robot’s frame and vixy is the feet velocity in xy-plane of robot’s frame.

Reward Equation Weight

Powers |τ∥θ̇|T -2e-5

Linear velocity tracking exp

{
−∥vcmd

xy −vxy∥2
2

σ

}
1.0

Angular velocity tracking exp

{
− (ωcmd

yaw −ωyaw)
2

σ

}
0.5

Linear velocity penalty in z-axis v2z -2.0
Angular velocity penalty ∥ωxy∥22 -0.05
Joint acceleration penalty −∥θ̈∥2 -2.5e-7

Base Height penalty (htarget − h)
2 -10.0

Joint torques −∥τ∥2 1
Action rate ∥at − at−1∥22 -0.01

Action smoothness ∥at − 2at−1 + at−2∥22 -0.01
Foot clearance

∑3
i=0

(
ptarget
z − piz

)2 · vixy -0.01
Orientation ∥g∥22 -0.2

Table A1: Reward Terms

11

A.3 Domain Randomizations

Parameters Range[Min,Max] Unit

Body Mass [0.8,1.2]×nominal value Kg
Link Mass [0.8,1.2]×nominal value Kg

CoM [-0.1,0.1]×[-0.1,0.1]×[-0.1,0.1] m
Payload Mass [-1,3] Kg

Ground Friction [0.2,2.75] -
Ground Restitution [0.0,1.0] -

Motor Strength [0.8,1.2]×motor torque Nm
Joint Kp [0.8,1.2]×20 -
Joint Kd [0.8,1.2]×0.5 -

Initial Joint Positions [0.5,1.5]×nominal value rad
System Delay [0,3∆t] s
External Force [-30,30]×[-30,30]×[-30,30] N

Table A2: Domain Randomizations and their Respective Range

A.4 Network Architecture

Module Inputs Hidden Layers Outputs

Encoder oH [256, 128] zt
Actor oHt ,zt [512, 256, 128] at
Critic oHt ,zt [512, 256, 128] vt
TransModel zt,at [256, 128] z̃t+1

Table A3: Network Architecture

A.5 Hyper Parameters for Training

Hyperparameter Value

Clip range 0.2
Entropy coefficient 0.01

Discount factor 0.99
GAE discount factor 0.95

Desired KL-divergence 0.01
Learning rate 1e-3
Adam epsilon 1e-8

Replay Buffer Size 4096×24
Triplet loss coefficient 1.0

Table A4: Hyper Parameters for Training

12

A.6 Terrain Level Training Curves

In the Baseline [27] and HIM [29] code repositories, the default configuration includes a terrain
curriculum. Consequently, some agents may progress to harder terrains, potentially resulting in
lower returns. To verify the proposed algorithm’s actual performance, terrain level training curves
have been added, as shown in Figure 8.

Considering Figure 6 and Figure 8 together, it is evident that the actual performance of the SLR
algorithm surpasses both of these methods.

Figure 8: Terrain level training curves for Baseline and HIM code repositories.

13

	Introduction
	Related Work
	Method
	Problem Formulation
	Framework Overview

	Experiments
	 Ablation Study for Latent Representations
	Latent Representation Analysis

	Results
	Compared Methods
	Simulation
	Deploy in Real-World

	Discussion and Limitations
	Appendix
	Self-learning Latent Representation Details
	Reward Terms Detail
	Domain Randomizations
	Network Architecture
	Hyper Parameters for Training
	Terrain Level Training Curves

